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• 1. Short history (see Olver’s book; I would emphasize Quantum
Mechanics’ needs: y ′′ + q(x ;λ)y = 0).

Several ways to present the WKB (or LG) approximation: Often,
especially physicists, start looking for solutions , of the form

y(x) ∼ exp

{
1

ε

∞∑
n=0

εnSn(x)

}
as ε→ 0.
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Inserting formally this into equation

ε2y ′′ − q(x)y = 0

leads then, to lowest order, to the two basis solutions

y(x) ∼ q−1/4(x) exp±
{

1

ε

∫ x

x0

q1/2(ξ) dξ

}
.

This comes solving the so-called Eikonal equation

S ′20 = q(x),

yielding

S0(x) = ±
∫ x

x0

q1/2(ξ) dξ,

and
2S ′0S ′1 + S ′′0 = 0,

from which

S1(x) = −1

4
log q(x) + const.
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• 2. Olver’s approach provided a rigorous justification (for 2nd
order linear ODEs), and precise error bounds. He stressed the
double asymptotic nature, with respect to x and ε.

Instead of repeating his classical results, here we give a unified
treatment for second-order linear differential and difference
equations (SIMA ’94):
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Theorem (SIMA ’94). Consider the linear Volterra integral
equation

ε(x) =

∫ +∞

x
K (x , t) [φ(x , t) + ε(t)] dµ, x ∈ [x0,+∞),

x0 ∈ R and µ a complex (finite) measure. Assume that, for each
fixed x ∈ [x0,+∞),

(i) K (x , ·), φ(x , ·) are µ-measurable complex-valued functions;

(ii) |K (x , t)|, |K (x , t)φ(x , t)| ≤ h(x , t) |µ|-a.e. for t ≥ x , where
h(x , ·) ∈ L1([x ,+∞);µ), and, moreover,

V (x) :=

∫ +∞

x
h(x , t) d |µ|

is nonincreasing and limx→+∞ V (x) < 1.

Then, ∃ ! solution ε(x)
for x > x1 := inf{x : x ≥ x0,V (x) < 1}, and the estimate holds:

|ε(x)| ≤ V (x)

1− V (x)
.
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Specializing K , φ (≡ 1, in general), and µ, we recover:

• (i) the classical Olver’s results for ODEs;

• (ii) the case that we called “finite moments perturb.s”;

• (iii) the analogous cases for difference equations.

We had studied cases (iii) directly in earlier works (JCAM ’92,
JMAA ’92), and later (JAT ’99).

We’ll go back later to difference eq.s.
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• 3. The LG approximation for systems of ODEs.
Theorem (asymptotically constant case), JMAA 2007.
Consider the matrix differential equation Y ′′ = Q(t)Y ,
Q,Y ∈Mn, where

Q(t) = f (t)A + G (t),

with f (t) > 0 in [a,+∞), a ≥ 0, f ∈ C 2([a,+∞)),
G ∈ C 0([a,+∞); Mn), and A ∈Mn is constant and nonsingular,
and such that its real negative eigenvalues (if any) generate Jordan
blocks of dimension 1. Denote by A1/2 one of the solutions of the
matrix equation X 2 = A, whose eigenvalues all have nonnegative
real parts, and by A−1/2 its inverse (it is intended that A−1/2 ≡
(A1/2)−1).



Set

ϕ(t) :=

∫ t

a
f 1/2(s)ds,

and

V1(t) :=

∫ +∞

t
f −1/2(s) · ‖A−1/2K1(s)‖ ds,

where

K1(t) :=

(
5

16
f −2f ′2 − 1

4
f −1f ′′

)
I − G1(t),

G1(t) := eϕ(t)A1/2
G (t)e−ϕ(t)A1/2

.



(I) Then, if V1(a) <∞, there exists a C 2 solution, Y1(t), to
equation above on [a,+∞) which can be represented as

Y1(t) = f −1/4(t)e−ϕ(t)A1/2
[I + E1(t)],

with

‖E1(t)‖ ≤ ec V1(t) − 1, f −1/2(t) · ‖A−1/2E ′1(t)‖ ≤ d

c

(
ec V1(t) − 1

)
,

where

d := max
0≤t<+∞

‖e−2tA1/2‖, c :=
1

2
(1 + d).



(II) Similarly, defining

V2(t) :=

∫ t

a
f −1/2(s) · ‖A−1/2K2(s)‖ ds

where

K2(t) :=

(
5

16
f −2f ′2 − 1

4
f −1f ′′

)
I − G2(t),

G2(t) := e−ϕ(t)A1/2
G (t)eϕ(t)A1/2

,

if the relation V2(+∞) <∞ holds, then there exists a C 2 solution,
Y2(t), to the equation above, on [a,+∞),

Y2(t) = f −1/4(t)eϕ(t)A1/2
[I + E2(t)] ,

with

‖E2(t)‖ ≤ ec V2(t)−1, f −1/2(t)·‖A−1/2E ′2(t)‖ ≤ d

c

(
ec V2(t) − 1

)
,



(III) When both conditions, V1(a) < +∞ and V2(+∞) < +∞,
hold, and α(−A1/2) < 0, and ϕ(t)→ +∞ as t → +∞, a solution
Ỹ2(t) exists on a suitable subinterval [ã,+∞) of [a,+∞), such

that Ỹ2(t) ∼ eϕ(t)A1/2
as t → +∞. More precisely, we have

Ỹ2(t) = eϕ(t)A1/2
[
I + Ẽ2(t)

]
,

with

‖Ẽ2(t)‖ ≤ 1 + K

1− K

{
c
[
Ṽ2(+∞)− Ṽ2(t)

]
+

p(2t)

2
Ṽ2(+∞) e−tα(A1/2)

}
where K := exp {c Ṽ2(+∞)} − 1, Ṽ2(t) :=

∫ t
ã ‖A

−1/2K2(s)‖ ds
(with ã chosen in such a way that K < 1), is an estimate of
E2(+∞). The pair (Y1(t), Ỹ2(t)) is a basis for solutions to
equation above, on [ã,+∞).



Theorem (almost-diagonal case), Asympt. Anal. 2006.
Consider the differential equation

Y ′′ = Q(t)Y , t ∈ [a,+∞),

with a ≥ 0, Q and Y n × n matrix-valued functions, whose entries
are in general complex, where

Q(t) = D(t) + G (t), D ∈ C 2([a,+∞); Mn), G ∈ C 0([a,+∞); Mn),

with D(t) := diag(λ1(t), λ2(t), . . . , λn(t)) a nonsingular diagonal
matrix, and stipulate that below, in D1/2(t), we choose

Reλ
1/2
j (t) ≥ 0 for all j ’s, while λ

−1/2
j means (λ

1/2
j )−1, and

D1/4(t) the square root of D1/2(t), obtained choosing

Reλ
1/4
j (t) ≥ 0 for every j .



Setting

V1(t) :=

∫ +∞

t
‖D−1/2(s)K1(s)‖ ds,

where

K1(t) := Γ(t)− G1(t), Γ(t) :=
5

16
D−2(D ′)2 − 1

4
D−1D ′′,

G1(t) := D1/4(t) e
R t
a D1/2(s) dsG (t) e−

R t
a D1/2(s) dsD−1/4(t),

assume that V1(a) <∞.



Then, there exists on the whole halfline [a,+∞) a C 2 solution, say
Y1(t), which can be represented as

Y1(t) = D−1/4(t) e−
R t
a D1/2(s) ds [I + E1(t)],

where

‖E1(t)‖ ≤ ec V1(t) − 1, ‖D−1/2(t)E ′1(t)‖ ≤ ec V1(t) − 1,

and c = 1. When the eigenvalues of D(t) are all real positive, the
previous estimates can be improved setting c = 1/2.



Defining

V2(t) :=

∫ t

a
‖D−1/2(s)K2(s)‖ ds,

where
K2(t) := Γ(t)− G2(t),

G2(t) := D1/4(t) e−
R t
a D1/2(s) dsG (t) e

R t
a D1/2(s) dsD−1/4(t),

assuming that V2(+∞) <∞, there exists on [a,+∞) a C 2

solution to equation above,

Y2(t) = D−1/4(t) e
R t
a D1/2(s) ds [I + E2(t)],

where

‖E2(t)‖ ≤ ec V2(t) − 1, ‖D−1/2(t)E ′2(t)‖ ≤ ecV2(t) − 1,

and c is defined as above.



• 4. What about PDEs? Some results from the ODE systems,
semi-discretizing the PDE (JMAA 2007)

• 5. Abstract equations. (Something done, something probably
not yet.)
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• 6. LG approximations for second-order scalar difference
equations.
Consider

Yn+2 + AnYn+1 + BnYn = 0, An,Bn ∈ C, n ∈ Zν ,

with
(i) An 6= 0 for all n ∈ Zν ;
(ii)

Bn

AnAn−1
→ L, L ∈ C \ [1/4,+∞), L 6= 0, as n→∞;

(iii)
∞∑

n=ν+1

∣∣∣∣ Bn

AnAn−1
− L

∣∣∣∣ <∞.



This can be taken into the “canonical” form

∆2yn + qnyn = 0, n ∈ Zν ,

with

qn := −1 +
4Bn

AnAn−1
, n ≥ ν + 1,

upon setting

Yn := αnyn, αn := αν+1

n−2∏
k=ν

(
−Ak

2

)
, n ≥ ν + 2

It is convenient to write

qn = a + gn, a := 4L, gn := 4

(
Bn

AnAn−1
− L

)
.



When a is real, the three following cases are important:

1. a > 0, and
∑∞

n=ν |gn| <∞;

2. a = 0, and
∑∞

n=ν nk |gn| <∞, k = 1 or 2

(“finite moments perturbations”, JMAA ’92);

3. a < 0, a 6= −1, and
∑∞

n=ν |gn| <∞.



In case 1 (JCAM ’92), all real solutions are oscillatory, and there
exist n0 ∈ Zν and two linearly independent solutions,

y
(j)
n = (λj)

n
[
1 + ε

(j)
n

]
, j = 1, 2, n ≥ n0,

where
λ1 = 1 + ia1/2, λ2 = λ1,

are the roots of the characteristic polynomial associated with the
unperturbed difference equation (that with gn ≡ 0), and

|ε(j)n | ≤
Vn

1− Vn
, j = 1, 2, n ≥ n0,

Vn := [a(1 + a)]−1/2
∞∑

k=n

|gk |.

When gn is real-valued, y
(1)
n and y

(2)
n are complex conjugate.

Moreover, n0 = min{n : n ∈ Zν ,Vn < 1}.



In case 2 (JMAA ’92), assuming, e.g.,
∑∞

n=ν n2|gn| <∞,
∃n0 ∈ Zν such that there are two linearly independent solutions for
n ≥ n0 of the form

y
(1)
n = 1 + ε

(1)
n , y

(2)
n = n + ε

(2)
n ,

with

|ε(j)n | ≤
V

(j)
n

1− V
(1)
n

, for n ≥ n1, j = 1, 2,

V
(1)
n :=

∞∑
j=n

(j − n + 1) |gj |, V
(2)
n :=

∞∑
j=n

j (j − n + 1) |gj |,

n1 := min{n : n ∈ Zν ,V
(1)
n < 1}; n0 is the smallest index ≥ ν such

that gn 6= −1 for all n ≥ n0 (note that n0 ≤ n1).



An LG theory for Case 3, apparently, was missing in the
literature (up to about 1992).

In this case, others than before, qualitative asymptotics (but no
precise error bounds) could be obtained by Poincaŕs or Perron’s
theorems.

Set α = −β < 0, β 6= 1, and assume
∑∞ |gn| <∞. Then

∃n1 ∈ Zν and two linearly independent solutions to
∆2yn + qnyn = 0,

y−n = (λ−)n[1 + εn], n ≥ n1; y+
n ∼ (λ+)n, n→∞,

where λ± = 1±
√
β are the roots of the characteristic equation

associated to the unperturbed difference equation, and

|εn| ≤
Vn

1− Vn
, Vn :=

1√
β|
√
β − 1|

∞∑
k=n

|gk |, n ≥ n1,

being n1 = min{n ∈ Zν : Vn < 1}. When gn is real, y±n are real.

In JAT ’99, we considered the general case of complex An,Bn,
hence L (or a, besides gn).
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7. Applications to orthogonal polynomials (OPs).

Recall: All OPs on the real line with respect to a positive Borel
measure satisfy a three-term linear recurrence relation like (e.g., for
the monic form)

Pn+2(x)− (x − γn)Pn+1(x) + δnPn(x) = 0, n = −1, 0, 1, 2, . . . ,

P−1(x) ≡ 0, P0(x) ≡ 1,

with γn real and δn > 0. Here x is a fixed parameter, while we are
interested in n→∞.



The “oscillatory class” (a > 0) includes several important examples
of OPs.
7.1. Legendre polynomials (JCAM ’92).

An ≡ An(x) = −2n + 3

n + 2
x , Bn =

n + 1

n + 2
,

hence

qn(x) = −1 +
4

x2

(n + 1)2

(2n + 3)(2n + 1)
.

Here x 6= 0, but recall the multiplicative transformation
Yn = αnyn, with

αn ≡ αn(x) =
(2n − 1)!!

(2n)!!

(x

2

)n
, ν = −1, α0 = 1.

Then

lim
n→∞

qn(x) = −1 +
1

x2
=: a(x) (finite and > 0 for 0 < |x | < 1),

∞∑
n=−1

|qn(x)− a(x)| =
1

x2

∞∑
n=−1

1

(2n + 3)(2n + 1)
<∞.



The theory we developed in JCAM ’92 yields the basis:

Y
(j)
n = (sgn x)

(2n − 1)!!

(2n)!!
exp {(−1)j+1 i n θ(x)}

[
1 + ε

(j)
n (x)

]
, j = 1, 2,

for n ≥ n0(x) := min
{

n : (1− x2)−1/2/2(2n + 1) < 1
}

(recall that
gj(x) := qj(x)− a(x)) for each fixed x , with 0 < |x | < 1, where∣∣∣ε(j)n (x)

∣∣∣ ≤ Vn(x)

1− Vn(x)
, Vn(x) =

(1− x2)−1/2

2(2n + 1)
, n ≥ n0(x).

Note that Vn(x) = O(n−1) as n→∞.
Here n0(x) and the error estimates can be given uniformly in x ,

for x in any given but fixed compact subset K of (−1, 1). Then

ε
(j)
n (x) can be shown to be continuous in K . The basis functions

Y
(j)
n are however discontinuous at x = 0 for all odd n.



We can then represent

Pn(x) = c1(x)Y
(1)
n (x) + c2(x)Y

(2)
n (x), n ≥ n0(x),

and also

= (sgn x)n (2n − 1)!!

(2n)!!
A(x) [cos(nθ(x) + δ(x)) + En(x)] .

Comparing with Darboux asymptotic formula

Pn(cosφ) =

(
2

sinφ

)1/2 (2n − 1)!!

(2n)!!
cos

[(
n +

1

2

)
φ− π

4

]
+O

(
n−3/2

)
,

where x = cosφ, 0 < φ < π, we can identify A(x), δ(x).



The result is

|A(x)| =

(
2

sinφ

)1/2

=

√
2

(1− x2)1/4
, δ(x) =

1

2
φ(x)−π

4
(modπ),

and then the Darboux formula with an upper bound for the
absolute error

(2n − 1)!!

(2n)!!
|A(x)| · |En(x)|

≤
√

2

(1− x2)1/4

(2n − 1)!!

(2n)!!

1

2(2n + 1)(1− x2)1/2 − 1
n ≥ n0(x),

which is of order of n−3/2. (The relative error was already given in
terms of En(x) above.)



7.2. Pollaczek polynomials (JCAM ’92).

We can do something similar for a subfamily of the Pollaczek
polynomials Pλ

n (x ; a, b, c), which contains the ultraspherical
polynomials.

The parameters should meet in any case the limitations: a ≥ |b|,
2λ+ c > 0, c ≥ 0, or a ≥ |b|, 2λ+ c ≥ 1, c > −1.
We have:

An ≡ An(x) = −2
(n + λ+ a + c + 1)x + b

n + c + 2
, Bn =

n + 2λ+ c

n + c + 2
.



We are able to treat the subfamily Pλ
n (x ; 0, 0, c), i.e., that with

a = b = 0). With c = 0 we obtain the ultraspherical polynomials
(when λ = 1/2 we recover the Legendre polynomials). We obtain

Pλ
n (x ; 0, 0, c) = (sgn x)n (λ+ c)n

(c + 1)n
A(x) [cos(nθ(x) + δ(x)) + En(x)] .

where

|En(x)| ≤ |ε1n(x)| ≤ Vn

1− Vn
,

Vn =
|λ| |1− λ|

(1− x2)1/2

∞∑
k=n

1

|(k + λ+ c)(k + λ+ c + 1)|
.

Again, A(x) and δ(x) are continuous for 0 < |x | < 1.
In the special case a = b = c = 0 of ultraspherical OPs, we can
identify A(x) and δ(x), obtaining

A(x) =
21−λ

(1− x2)λ/2
, δ(x) = (sgn x)

(
λφ− 1

2
λπ

)
.



7.3. Blumenthal-Nevai (or BN) class of OPs (MAA ’96).

Again, if explicit qualitative representations are available, the LG
approach allows to obtain precise error bounds.
Recall the oscillatory case (JCAM ’92). Assuming An and Bn real,
hence gn and αn real, every solution can be represented as

Yn = Aαnρ
n[cos(nθ + η) + En], n ≥ n0,

A and η being two real parameters, and

ρ := |λ+| = (1 + a)1/2, θ := arg λ+,

|En| ≤ |ε+n | = O(Vn), Vn := [a(1 + a)]−1/2
∞∑

k=n

|gk |,

provided that

lim
n→∞

Bn

AnAn−1
=: L =

1

4
(a + 1) >

1

4
,

and

(∗)
∞∑

k=n

∣∣∣∣ Bn

AnAn−1
− L

∣∣∣∣ <∞.



Now we focus on

Pn+2(x)− (x − γn)Pn+1(x) + δnPn(x) = 0, n = −1, 0, 1, 2, . . . ,

with P−1(x) ≡ 0, P0(x) ≡ 1, γn real, and δn > 0.
0.2cm
The “Blumenthal-Nevai class” is the class of monic OPs for

which both limits,

lim
n→∞

γn = γ, lim
n→∞

δn = δ,

exist and are finite.

This case includes, e.g., Jacobi and Pollaczek OPs.



Now we focus on

Pn+2(x)− (x − γn)Pn+1(x) + δnPn(x) = 0, n = −1, 0, 1, 2, . . . ,

with P−1(x) ≡ 0, P0(x) ≡ 1, γn real, and δn > 0.
0.2cm
The “Blumenthal-Nevai class” is the class of monic OPs for

which both limits,

lim
n→∞

γn = γ, lim
n→∞

δn = δ,

exist and are finite.

This case includes, e.g., Jacobi and Pollaczek OPs.



Details concerning the (monic) Jacobi OPs are very cumbersome
(in MAA ’96 we used Mathematica to express the error control

term, V
(α,β)
n (x), as a function of the parameters α and β).

We stress that error estimates could be established for Jacobi
OPs also in the range −1 < α, β < −1/2.
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It can be shown that the smallest and the largest limit-points of
the spectrum are

σ := γ − 2
√
δ, τ := γ + 2

√
δ.

Blumenthal had shown that the zeros of the Pn(x) are dense in
[σ, τ ], and Nevai proved that this interval is a subset of the
spectrum.

Many people then contributed. Here we confine our interest to
the asymptotic behavior as n→∞ for x in the essential spectrum,
[σ, τ ].
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With the previous symbols,

L ≡ L(x) =
δ

(x − γ)2
>

1

4
∀x ∈ (σ, τ) \ {γ}.

Note that δ ≥ 0, but δ = 0 would give L = 0 rather than > 1/4.

Also, being

α ≡ α(x) =
n−2∏
k=ν

(
x − γk

2

)
,

provided that x 6= γ, we can choose ν = −1 as long as x 6= γk , for
each k; otherwise, we can take ν = m + 1, where m :=
max{k : γk = x}. In any case, ν = ν(x).



The convergence condition (*) above becomes, for the BN class,

(∗∗)
∞∑

n=ν+1

∣∣∣∣ δn
(x − γn)(x − γn−1)

− δ

(x − γ)2

∣∣∣∣ <∞.
Also in this case, an asymptotic representation like

Pn(x) = A(x)

(
n−2∏
k=ν

(
x − γk

|x − γ|
√
δ

))(
2
√
δ

|x − γ|

)ν+1

×

× [cos(nθ(x) + η(x)) + En(x)] , n ≥ n0(x),

holds, with

θ(x) := arctan

[(
4δ

(x − γ)2
− 1

)1/2
]
.

Setting x = γ + 2
√
δ cosφ, 0 < φ < π, π 6= 0, the latter becomes

θ(x) = φ if γ < x < γ + 2
√
δ (i.e., 0 < φ < π/2), and

θ(x) = π − φ if γ − 2
√
δ < x < γ (i.e., π/2 < φ < π).



Moreover, the error term above can be estimated as

|En(x)| ≤ Vn(x)

1− Vn(x)
,

with

Vn(x) :=

[
δ

(
δ − (x − γ)2

4

)]−1/2 ∞∑
k=n

∣∣∣∣ δk(x − γ)2

(x − γk)(x − γk−1)
− δ
∣∣∣∣ .

Here n0(x) is the smallest integer ≥ ν(x) s.t. Vn(x) < 1.

Again, whenever the functions A(x) and η(x) can be identified,
the asy. relation above yields an asy. representation with a precise
error bounds.

In any case, it provides qualitative information on the asy.
behavior of the OPs in the BN subclass characterized by (**).



7.4. Ultraspherical functions of the second kind (JAT ’99).

An asymptotic representation with a precise error bound could
be obtained for such functions.

They are recessive solutions to the difference equation satisfied
by the ultraspherical OPs, and play a role in providing error
estimates in Gaussian (Gauss-Gegenbauer) quadratures of analytic
integrands,



• 8. The LG approximation for systems of difference equations
(done in case of asymptotically constant matrix coefficient; to be
completed in case of asymptotically diagonal matrix coefficient.)

These cases parallel those of systems of ODEs. The case
corresponding to the case of asymptotically constant coefficient, as
well as that corresponding to the “finite moments perturbation”,
was studied in JMAA 2008. (The other is in progress.)

Some applications to orthogonal matrix polynomials can be
done.
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• 9. A further application: Numerical solution of rapidly oscillatory
ODEs.

In Math. Comp. ’90 and in some Proc.s vol. in ’90, a method
was developed to compute zeros of solutions, and actually even a
basis of sol.s, to 2nd order linear ODEs.

This method turned to be very effective even whe the sol.s
oscillate extremely rapidly.
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The method exploits the fact that the equation y ′′ + q(x)y = 0
has a basis of solutions of the form y1(x) = |α′(x)|−1/2 sinα(x),
y2(x) = |α′(x)|−1/2 cosα(x), where α(x), called a phase, is a
solution of the so-called Kummer equation,

α′2(x) = q(x)− 1

2
{α, x} .

Here

{α, x} :=
α′′′(x)

α′(x)
− 3

2

(
α′′(x)

α′(x)

)2

is the “Schwarzian derivative” of α(x) with respect to x .



A theory, developed by O. Bor̊uvka, provides a number of
properties of such phase functions. In particular, being α(x)
strictly monotonic, the oscillatory behavior of every solution is
reduced to describing a much better behaved function. In
particular, zeros of every solution can be computed efficiently.

The algorithm we developed allows to exploit efficiently symbolic
manipulators such as Mathematica.
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The algorithm:

We first set φ := (α′)2, tranforming the Kummer
equation into

φ(x) = q(x) + [φ, x ] ,

where

[φ, x ] := −1

4

φ′′(x)

φ(x)
+

5

16

(
φ′(x)

φ(x)

)2

replaces the Schwarzian. This suggests the iterative algorithm

φ0(x) = q(x), φn+1(x) = q(x) + [φn, x ] , n = 0, 1, 2, . . . ,

for φn(x) := (α′n(x))2.

We proved convergence, in a suitable sense, of the sequence
{φn(x)}∞n=0 to an appropriate solution φ(x). These results concern
some classes of coefficients q(x) of the original differential
equation, namely when q(x) tends to a positive constant, or to be
polynomial, or exponential, as x → +∞.
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A phase α is any C 3-solution of the equation
tanα(x) = v(x)/u(x), where (u, v) denotes a basis for the ODE.
Such a function has the property that α′(x) 6= 0, and one obtains

α′(x) =
W

u2(x) + v2(x)
,

where W is the (constant) Wronksian of (u, v). The Kummer
ODE above is a close-form equation satisfied by any α.

The starting point of our asy. analysis is using LG functions for
(u, v), so to have some representation along with estimated error
bounds.

Then, casting the problem in the complex domain (to control
derivatives), we can go to te iterative schemse (for αn(x), or, more
conveniently, for φn(x)).
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It is noteworthy that in 1950 Frank derived an
asymptotic-numerical method to compute zeros of certain Special
Functions, starting from the equation
y(x , α) := u(x) cosα− v(x) sinα = 0. In particular, he considered
the Bessel equation.

It turns out that the generic zero, say x = ρ(α), of one of such
solution can be computed from

ρ′2 =
1

q(ρ)

(
1− 1

2
{ρ, α}

)
.

It can be shown that the function x = ρ(α) is the inverse of the
phase function α(x), which solves Kummer’s equation.
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The convergence of φn(x) to φ(x) occurs on an increasing
sequence of angular regions, and is extremely fast.

Crucial is the estimate of [φ, x ]− [ψ, x ]. Note that:

• This is also useful in simplifying the algorithm, e.g., using
symbolical manipulations.

• Neglecting {α, x} = −2[φ, x ] in the appropriate iterative scheme,
being φ(x) ≈ q(x), amounts – loosely speaking – to neglect
[q(x), x ] (≈ [φ(x), x ]), cf. the LG (or WKB) theorem. In fact, this
amounts to neglect |q′(x)/q(x)| and |q′′(x)/q(x)| with respect to
1.
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In 1989, in Winnipeg, I gave a talk for the 65th Birthday of Frank,
and I wished him still a long career.

This was 22 years ago, so it seems that this happened!

I’d like to renew my wishes now ...
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Thank you for your attention!


